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ABSTRACT 

In non-linear chromatography, it is common to observe very steep profiles. This happens for overloaded elution bands, for 
frontal analysis breakthrough curves and for the band profiles of the isotachic train in displacement chromatography. These 
regions where the concentration vary very rapidly are called shock layers. The relationship between the thickness of the shock 
layer in frontal analysis and the coefficients of the conventional terms of the plate height equation were studied experimentally. 
The shock layer theory of Rhee and co-workers permits the simple determination of the optimum linear velocity for minimum 
shock layer thickness in the case when the adsorption behavior of the feed components is described by the Langmuir model. The 
optimum linear velocity in frontal analysis is not only a function of the coefficients of the axial dispersion and the mass transfer 
resistance terms, and the retention factor (kb), as in linear chromatography, but also a function of the plateau concentrations and 
the second Langmuir parameter of the isotherm, b. Depending on the retention factor, the optimum velocity in frontal analysis 
may be larger, but is most often much smaller than in linear chromatography. Experimental results are in excellent agreement 
with the prediction of the theory. If they could be extended to displacement chromatography, these findings would explain some 
apparent contradictions found in the literature regarding the influence of the mobile phase flow velocity on the degree of 
separation between bands achieved in displacement chromatography, and clarify certain controversies. 

INTRODUCTION 

In spite of a number of investigations [l-12], 
there is still a profound misunderstanding of the 
exact influence of the column efficiency on the 
band profiles in non-linear chromatography. 
Some workers are still mistaking the effects of 
thermodynamics caused by the non-linear 
behavior of the isotherm for a source of band 
broadening similar to axial dispersion [1,2]. 

* Corresponding author. Address for correspondence: De- 
partment of Chemistry, University of Tennessee, Knoxville, 
TN 37996-1600, USA. 

Others have attempted to contrive empirical 
approaches which lack a fundamental back- 
ground and have failed [2-41. Knox and Pyper 
[5] suggested calculating the band width in non- 
linear chromatography by using the rule of 
variance additivity and applying it to two in- 
dependent contributions, of kinetic and thermo- 
dynamic origin, respectively. The former contri- 
bution is derived from the column efficiency, the 
latter from an approximate solution of the ideal 
model [5]. This procedure gives a reasonable 
estimate of the band width [6-81 and a very good 
approximation of the profile of the dispersive 
boundary of the profile. However, it is not 
correct because the convolution of the thermo- 
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dynamic band profile by an axial dispersion is a 
shift-variant convolution [9], and the rule of 
variance additivity does not apply. It would fail 
entirely if it were used to predict the steep parts 
of band profiles. 

We know that when the adsorption isotherm is 
convex upwards the band profile has a steep 
front and a rear diffuse boundary. (The converse 
is true for a convex downwards isotherm; we 
shall not discuss here this infrequent case.) The 
mechanism of the formation of such a profile was 
elucidated long ago [ 13,141, and the work done 
in this area was reviewed recently [lO,ll]. The 
formation of a shock in the case of an infinitely 
efficient column is easily explained [lo-141. 
When the column has a finite efficiency, the 
concentration discontinuity is relaxed and re- 
placed by a steep front which is also a constant 
pattern, i.e., propagates at the same velocity as 
the shock, without changing shape, and most 
notably without broadening [15,16]. Similarly, in 
frontal analysis the breakthrough curve has a 
very steep front, and in displacement chromatog- 
raphy the boundary between two successive 
zones is very steep. These steep boundaries are 
called shock layers. The theory of shock layers 
has been reviewed by Vermeulen et al. [16], who 
pioneered its development [17]. The simplest 
and most useful model has been derived and 
studied by Rhee and co-workers [18-211. This 
theory results in a simple expression for the 
shock layer thickness (SLT) in the case of 
Langmuir adsorption behavior [l&22,23]. 

We present here the results of a theoretical 
and experimental investigation of the depen- 
dence of the SLT in frontal analysis on the two 
main parameters which control it, the mobile 
phase velocity and the height of the concen- 
tration step injected into the column. At this 
stage, the shock layer theory applies only in 
cases where a constant state, i.e., a constant 
concentration, is achieved behind the shock 
layer, and thus the ideal shock would move at a 
constant velocity. This is the case in frontal 
analysis, after the time needed for the constant 
state to be established [22]. This is also the case 
in displacement chromatography, when the iso- 
tachic train is formed, but the theory of shock 
layer in two-component cases is more complex 

[21], and this topic will be discussed in a future 
paper [24]. However, our present results and 
conclusions cannot be extended directly to the 
study of band profiles in overloaded elution. 

The determination of SLT is a new approach 
to the study of column performance in non-linear 
chromatography, which is valid when the adsorp- 
tion behavior of the components considered is 
closely enough approximated by the Langmuir 
model. There is in this instance a simple relation- 
ship between the SLT and the column height 
equivalent to a theoretical plate (HETP). Thus, 
we can derive simply the optimum linear velocity 
for minimum SLT, uipt, which is related to the 
optimum velocity for minimum HETP, u&. The 
SLT, SLT,,, and z& will play in frontal analysis 
(and probably also in displacement chromatog- 
raphy [24]) a role similar to that of H, Hmin, and 

Ut;pt in elution chromatography. 
Although constant pattern behavior, the 

characteristics of the breakthrough curves and 
the thickness of shock layers have been actively 
studied in chemical engineering [13-211, there 
has been little application of the shock layer 
theory so far in chromatography regarding the 
optimization of the experimental conditions in 
order to improve the steepness of the break- 
through curves in single-component frontal anal- 
ysis. This is not surprising, as these fronts are 
already very steep anyway; the only practical use 
of frontal analysis is in the determination of the 
retention time of the inflection point of the 
breakthrough curve, to calculate the integral 
mass balance of adsorption in the column; in 
practice, the accuracy of this determination does 
not depend much on the front steepness. As 
shown previously, this is not entirely true in 
two-component frontal analysis [22]. 

It is more surprising that there has been as 
little investigation regarding the optimization of 
the experimental conditions to minimize the SLT 
in displacement chromatography and to improve 
zone separation in the isotachic trains. We know 
that the side profiles of these zones cannot be 
vertical, as predicted by the ideal model. 
Because of the axial dispersion and the finite rate 
of mass transfer, mixed regions appear between 
successive bands of pure components. These 
regions are shock layers. Obviously, the smaller 
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the shock layer thickness, the less is the degree 
of overlap between the bands of the isotachic 
train and hence the better is the separation. 
Actually, there are contradictory reports regard- 
ing the influence of the linear velocity on the 
quality of the separations achieved in displace- 
ment chromatography [25-311. Although this 
paper does not address this important problem, 
it is the first and necessary step in this direction. 
The solution of single-component problems is 
simpler and easier to study than that of multi- 
component problems. 

THEORY 

This work is based on the shock layer theory 
of Rhee and co-workers [M-21]. The model they 
used considers the constant pattern behavior 
[E-21], which is an asymptotic solution, i.e., is 
achieved only after an infinitely long migration 
along the column. One of the problems en- 
countered in the application of this theory will be 
to determine whether a constant pattern is 
achieved at elution. The basic assumptions of the 
model are (i) the additivity of the dispersive 
contributions from finite mass transfer rates and 
from axial dispersion (axial and eddy diffusions); 
and (ii) the approximation of the mass transfer 
kinetics by the solid film linear driving force 
model. Because of the high column efficiency, 
i.e., of the fast rate of the mass transfer kinetics, 
the error introduced by the first assumption is 
certainly small. It seems that the second assump- 
tion is also valid in most cases of importance in 
chromatography [32]. 

We have recently shown how this theory can 
be applied to the study of the very steep fronts 
observed in high-concentration chromatography 
[22,23]. We first recall the definition of the SLT, 
then summarize the previous results and finally 
derive the relationships between the SLT, the 
mobile phase flow velocity and the displacer 
concentration in the case of Langmuir isotherm 
behavior. 

Definition of shock layer thickness 
In frontal analysis, a concentration step of 

constant height propagates along the column. 
The concentration profile at the column exit, or 

breakthrough curve, is the column response to a 
step input. It becomes ideally flat only at infinite 
distances from the center of the shock layer 
while we are interested in the part of the profile 
within a finite region. Thus, it is useful to define 
two concentrations bounds C: and C:, and an 
auxiliary variable 8, us: 

8= 
c’ - CT c: - C’ 
C’ - C’ = C’ - C’ (1) 

where C’ and C’ are the concentrations in the 
column at x = - CO and x = +w, respectively. 
The definition of 8 is illustrated in Fig. 1. The 
thickness of the shock layer is defined as the 
distance between the concentration bounds C: 
and C:: 

AqX = x(C:) - x(C;) (2) 

AqX depends on the choice of the arbitrary 
number 8, which in frontal analysis plays the 
same role as the relative peak height in elution. 
In this work we have taken 8 = 0.02. In displace- 
ment chromatography (which we shall discuss in 
a future paper [24]) and in many frontal analysis 
experiments (including all those performed in 
this work), C’ = 0 (the column does not contain 
any solute before the experiment starts), and 
C’ = C,,. Then, CT = K, and CT = (1 - e)C,. 

Rhee and co-workers [18-201 considered re- 
duced (i.e., dimensionless) variables, including a 
moving coordinate, 5 = x - hr, with x = z/L, 
reduced distance, r = utlL, reduced time, and A, 
reduced shock velocity {A = l/[l + F(AQ/AC)]} . 
They calculated the reduced SLT, At, along the 
direction 5 of migration of the shock in the x,t 
plane. The SLT at the column exit (z = L) is 
given by [23]: 

AqX=LAt (3a) 

where L is the column length. The SLT in time 
units at the column exit (elution) is given by: 

AT,=+ .A( 
s 

where U, is the shock velocity: 

u, = (4) 
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Fig. 1. Definition of 0 and other parameters used to study 
the shock layer. (a) Breakthrough curve corresponding to a 
single component step. (b) Differential of the breakthrough 
curve corresponding to a single-component step. 

where Z.J is the mobile phase velocity and AQ and 
AC are the amplitude of the concentration jumps 
in the stationary and the mobile phases, respec- 
tively. Q and C are related by the isotherm 
equation, Q =f(C), so the amplitudes of the 

concentration jumps are AQ = Q, - Q, =f(C,) - 
f(C) and C, - C,, respectively, if C, and C, are 
the mobile phase concentrations after and before 
the jump, respectively. 

Obviously, the shock layer thickness is a 
function of 0. 

Thickness of the shock layer 
Rhee and Amundson [19] assumed that the 

zone dispersion in the column results from two 
phenomena, axial dispersion due to molecular 
and eddy diffusion and characterized in chroma- 
tography by the first two terms of the Van 
Deemter [33] or the Knox [34] equations, and 
mass transfer resistance characterized by the 
third term of these equations. They showed that 
a constant pattern (shock layer) forms and prop- 
agates at the same velocity as the shock of the 
ideal model. They then derived an equation 
giving the profile of concentration in the shock 
layer of a pure component [19]. In the case of a 
Langmuir isotherm [Ml, this equation gives for 
the shock layer obtained when the concentration 
varies from 0 to C,: 

+ (1 + :)k,L 1 r, + 2 

r, 

+ (1 +‘K)k, 1 r, + 2 

r, 

AT, = [ 
D,(l + K)2 + I 1 r, + 2 . ln 1 - 8 - - 

KU2 k, G I I 8 

(54 
where D, is the axial dispersion coefficient, 
including the effects of molecular axial diffusion, 
tortuosity and eddy diffusion, and k, is the rate 
constant of mass transfer (solid film driving force 
model [19]). Note that in the equilibrium-disper- 
sive model, the apparent dispersion coefficient 
denoted D, and used in previous papers [32] 
includes also the effect of mass transfer kinetics; 
here it does not, which is why we use a different 
symbol. Eqn. 5a is dimensionless and eqns. 5b 



.I. Zhu and G. Guiochon I J. Chromatogr. 636 (1993) 189-202 193 

and c give the SLT in length and time units, 
respectively. The equation 5b is the most practi- 
cal for comparison with experimental results. 

In these equations, the Langmuir isotherm is 
written as 

ac bqC qr 
q= l+bC =l+C =+ =q,’ (64 

(6b) 

where Q and C are the actual concentrations of 
the compound in the stationary and the mobile 
phases, respectively, q, is the specific saturation 
capacity of the adsorbent, a and b are numerical 
coefficients and A = q/q, and r = bc are dimen- 
sionless concentrations; when r = 1, the amount 
adsorbed at equilibrium is A = 0.5. Accordingly, 
r, = bC,. The parameter K in the eqns. 5 is 

(7) 

where kh is the retention .factor, proportional to 
the initial slope of the isotherm (kh = Fa = Fbq,; 
see eqn. 6a). Finally, we note that the shock 
velocity in the conventional case when C, = 0 
and C, = C, can be written as 

us= u U 

=- Fbq, l+K 
l+ 1+r, 

(8) 

As shown by Rhee and Amundson [19], and 
discussed recently [32], the band profiles calcu- 
lated with the equilibrium-dispersive model and 
the solid film driving force model are the same 
provided that we use the following equation for 
the HETP: 

20, 20, K 
H= u =u+2. 

(l+K)’ *: 

where D, is the apparent dispersion coefficient 
[32,35] and K is given by eqn. 7. Eqn. 9 provides 
a relationship between the apparent dispersion 
coefficient and the concentration. The assump- 
tions on which it is based have been discussed 
above. The study of the dependence of the shock 
layer thickness on the velocity, u, and the 
concentration, C,,, provides the only direct meth- 
od of determination of H. In the case of linear 

chromatography, this equation becomes a form 
of the classical plate height equation: 

20, H=y + 
2k;u 

(1 + k;)‘k, 
(10) 

Depending on the relationship between D, and u 
which is used to account for eddy diffusion, we 
obtain the Van Deemter [33] or the Knox [34] 
plate height equations: 

H=A+; +Cu (114 

H=; +Au”~+CU (lib) 

with 

20, =Au+B 

or 

20, = B + Au~‘~ 

and 

(124 

(12’4 

2k;, 

’ = (1 + k;)“k, 
(W 

In eqns. 11 and 12, B is usually assumed to be 
equal to 2yD, [33,34], where y is the packing 
tortuosity and D, the mobile phase diffusivity of 
the solute. We note that eqn. 12c was derived by 
Giddings [36] using a completely different ap- 
proach. 

EXPERIMENTAL 

Equipment 
The modular liquid chromatograph used for 

the measurements of the SLT was assembled 
from two Gilson (Middleton, WI, USA) Model 
302 pumps, a Valco (Houston, TX, USA) ten- 
port pneumatically actuated valve connected 
with a l-ml loop and a Spectroflow 757 variable- 
wavelength UV detector (Kratos, Ramsey, NJ, 
USA). The detector output signal was connected 
to a DATA Master Model 621 (Gilson) for 
discretization of the response. This response was 
then acquired on a microcomputer, handled 
using the Gilson 715 software, and uploaded, 
when needed, on one of the computers of the 
University of Tennessee Computer Center. 
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Columns and chemicals 
A 5 x 0.46 cm I.D. Vydac (Separation Group, 

Hesperia, CA, USA) 5-pm Protein & Peptide 
C,, column, and two other columns, 5 x 0.21 cm 
I.D. and 25 X 0.21 cm I.D., laboratory packed 
with lo-pm Protein & Peptide C18, were used. 

2-Phenylethanol was purchased from Fluka 
(Buchs , Switzerland), 4-tert.-butylphenol from 
Aldrich (Milwaukee, WI, USA) and HPLC- 
grade water and methanol from Burdick and 
Jackson (Muskegon, MI, USA). All these 
chemicals were used as received. 

Procedures 
Chromatographic experiments. The experiment 

was designed to reduce the amount of sample 
needed, so the injection of a wide rectangular 
pulse was substituted for a step injection. The 
columns were first equilibrated for 10 min with a 
mobile phase stream [methanol-water (50:50)] 
originating from one of the pumps. Then, the 
ten-port valve was actuated for the time needed 
to let the other pump push the sample plug 
contained in the l-ml loop through the column 
and the pure mobile phase stream was resumed. 
Although the retention volume of the break- 
through curve exceeds 1 ml, a plateau at the 
injected concentration was always reached be- 
fore the negative breakthrough curve started. 
The operation was repeated at different flow- 
rates and with the three columns. 

Measurement of column eficiency. The ef- 
ficiencies of the two 5-cm long columns were 
measured under linear conditions as a function 
of the mobile phase flow velocity. The results are 
reported in the Figs. 2 (Vydac column, with 
2-phenylethanol) and 3 (laboratory packed 
column, with 4-tert.-butylphenol). The experi- 
mental data were fitted to the Van Deemter 
equation [33] (eqn. ll), which gave a smaller 
residual than the Knox equation [34] (eqn. llb) 
in this instance. The values of the coefficients 
D, = 0.5(A + B/u) and k, = 2khl(l+ &,)*C de- 
rived from the fit, together with the retention 
factors, kh, are given in Table I. 

Measurement of adsorption isotherm. The 
adsorption isotherms of 2-phenylethanol and 
4-tert.-butylphenol on the three columns used 
were measured by frontal analysis, as described 
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Fig. 2. Comparison between the dependences of the HETP 
(cm) measured under linear elution conditions and of the 
SLT (cm) for 2-phenylethanol on the mobile phase flow 
velocity. Top: plot of the SLT versus the mobile phase flow 
velocity. Experimental data (symbols) and prediction of eqn. 
5b (solid line). Bottom: plot of the HETP versus the mobile 
phase velocity. Experimental data (symbols) and best fit to 
the Van Deemter equation (solid line). Experimental condi- 
tions (both plots): 5 cm long Vydac column; mobile phase; 
methanol-water (50:50), detection at 270 nm; sample, 
2-phenylethanol; height of the concentration step in frontal 
analysis, 20 mg/ml; sample size for linear elution peaks, 40 
pg (0.2 ~1 of a 20 mg/ml solution). 

previously [37]. The experimental data were 
fitted to a Langmuir isotherm. There was excel- 
lent agreement between the experimental data 
and the Langmuir model in both instances. The 
retention factors of 2-phenylethanol and 4-tert.- 
butylphenol are 0.88 and 10.0, respectively. 

Measurement of shock layer thickness. In 
principle, two procedures are available for these 
measurements. In the direct procedure, follow- 
ing the definition of the shock layer, we measure 
the distance between the moments when the 
signal reaches two selected fractions (e.g., 5 and 
95%) of the baseline shift corresponding to the 
elution of the concentration step. Alternately, 
the breakthrough curves could be differentiated 
and their widths at a certain fractional height 
(e.g., half-height) taken as a measure of the 
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Fig. 3. Comparison between the dependences of the HETP 
(cm) measured under linear elution conditions, and of the 
SLT (cm) for 4-rert.-butylphenol on the mobile phase flow 
velocity. Plots as in Fig. 2. Experimental conditions (both 
plots): 5 cm long laboratory made column; mobile phase, 
methanol-water (5O:SO); detection at 276 nm; sample, 
4-rert.-butylphenol; height of the concentration step in frontal 
analysis, 20 mglml; sample size for linear elution peaks, 0.2 

CLg. 

shock layer width. Both procedures require 
smoothing of the response signal before the 
measurement is carried out, in order to eliminate 
the signal noise. 

In the first procedure, the recorded chroma- 
togram is first smoothed using a thirteen-point 
floating average algorithm. Then, the times at 
which the filtered breakthrough curve reaches 
the fractions 2% and 98% of the value corre- 

sponding to the plateau are determined by inter- 
polation. These values correspond to 8 = 0.02 in 
eqns. 5. The distance between these two times is 
taken as the thickness of the shock layer. This 
choice of 8 is arbitrary and made for the sake of 
convenience: any value between 0 and 0.5 would 
be possible. A compromise has to be found 
between the choices of a small value of 8, giving 
a large shock layer thickness, potentially more 
accurate, and of a large value of 0, corresponding 
to values of the detector signal which are suffi- 
ciently different from 0 and CO and can be 
measured more precisely, because the slope of 
the signal is more important. 

In the second procedure, the differential of the 
chromatogram is calculated by taking the differ- 
ence between successive data points on the 
recorded chromatogram and dividing by the data 
acquisition period. The differential chroma- 
togram is smoothed using a thirteen-point float- 
ing average algorithm. The points on the dif- 
ferential profile corresponding to the fractional 
heights 8 and 1 - 8 on the breakthrough curve 
are obtained at time 71 and r2, respectively, so 
that 

I 

71 

0 
y(r) dt = 8 (Isa) 

I 

72 

0 
y(t) dt = 1 - 0 (I3b) 

Calibration has shown that the values of ri that 
correspond to a given value of 8 correspond 
approximately to a fractional height of 10% of 
the derivative signal. This value changes little 
with the characteristics of the shock layer, e.g., 
the height of the concentration step. Hence, this 
procedure, which is attractive because of its 

TABLE I 

PARAMETERS OF THE VAN DEEMTER EQUATION 

Column 

Vydac (with 2-phenylethanol) 

Laboratory-made (with 4-tert.-butylphenol) 

ggiml) 

0 
20 

0 
20 

k;, 

0.88 

10 

D, k, 

0.0016~~ + O.WO25 800 
O.O016u, + 0.00024 542 

0.003~~ + 0.00032 83 
o.O03u, + 0.00035 48 
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simplicity and good reproducibility, was used in 
this work. 

As the band width in linear chromatography, 
the thickness of the shock layer can be expressed 
in either time or volume units. As we study the 
influence of the flow velocity on this thickness, it 
is more appropriate to use a distance or volume 
unit, which accounts automatically for the trivial 
effect of the change in the time scale when the 
mobile phase velocity is adjusted. As the proce- 
dure described gives Aq,, we obtain AqX by 
multiplying the former by the shock velocity, 
u, = U/(1 + K). 

RESULTS AND DISCUSSION 

We determined the SLT in single-component 
frontal analysis using two compounds and three 
columns of different lengths, packed with the 
same stationary phase. Shock layers are much 
narrower than either the small sample size 
peaks, or the breakthrough curves of small 
concentration steps which are recorded under 
the same experimental conditions, but corre- 
spond to linear chromatography. We see in eqn. 
5 that, for values of r, between 0.1 and 1, 
corresponding to moderate to heavy column 
loading, the SLT is between 50 and 7 times the 
efficiency contribution, itself of the same order 
as the column HETP. Accordingly, SLTs are 
more difficult than band widths to measure 
accurately. For this reason, some discrepancies 
are noted between the experimental results and 
theoretical predictions. Such discrepancies are 
more prone to take place at high velocities, 
because of the difficulty in eliminating extra- 
column band broadening. 

It should be noted that the thickness of the 
shock layer cannot become larger than the width 
of the breakthrough curve under linear condi- 
tions. This width is of the order of qa or, in 
distance terms, qa, q (a numerical parame- 
ter) depending on the value selected for 8, with 
erf(q) = 8. In this work, q was equal to 2.15, 
corresponding to the width of a Gaussian curve 
at 10% of its height. However, eqns. 5 predict 
that SLT tends towards infinity when r,, and 
hence C,, tends towards 0 (since K tends to- 
wards kh). This incorrect result comes from the 
fact that eqns. 5 are valid only when the shock 

layer is fully formed. In linear chromatography, 
there is no shock or shock layer, and eqns. 5 are 
not valid. In the transition region, when the 
radius of curvature of the isotherm is very large 
but no longer infinite, a shock layer could exist, 
but it takes a very long column for this shock 
layer to form. If the actual column used is too 
short, the breakthrough curve recorded is not 
the shock layer profile, it is narrower, and the 
experimental result cannot be expected to fit 
with the theory. 

Dependence of the thickness of the shock layer 
on the mobile phase velocity 

Experimental determination of the shock layer 
is difficult. The signal must be recorded precisely 
and sources of signal noise carefully controlled. 
The study also requires an accurate measure- 
ment of the adsorption isotherm (to derive the 
isotherm parameter b), and of the dependence of 
the HETP on the mobile phase velocity (to 
derive the parameters of the Van Deemter equa- 
tion, eqn. lla). As a consequence, a significant 
amount of random fluctuations is expected. 

In Figs. 2 and 3, we show for each of the two 
columns studied the plots of the column HETP 
ver8u.r the mobile phase flow velocity and of the 
shock layer thickness for a constant concentra- 
tion step height versus the same velocity. The 
experimental results (symbols) are compared 
with the prediction of eqn. 5b (solid line), which 
is overlaid. In all instances, the agreement be- 
tween the experimental results and the predic- 
tion of eqn. 5b is satisfactory over the whole 
range of velocities of interest in practical applica- 
tions. The slightly faster rate of increase of the 
shock layer thickness at high flow velocities may 
be attributed to an instrumental contribution 
(response time of the detector). This result 
demonstrates the validity, in the experimental 
cases studied, of eqn. 5b. 

The plots of SLT and HETP versuS the flow 
velocity are similar. Both exhibit a minimum. We 
observe, however, that the minima of the two 
curves are not obtained for the same velocity. 
This can be explained by comparing eqns. 9 and 
10. HETP in linear chromatography is given by 
eqns. lla and b. It includes two terms. The first 
term of eqn. 10 is the sum of the axial diffusion, 
2yD,lu (where y is the tortuosity coefficient and 
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D, the molecular diffusivity of the solute in the 
mobile phase) and the eddy diffusion (A in the 
Van Deemter equation, Au”~ in the Knox equa- 
tion; see eqns. 11 and 12). The second term in 
eqn. 10 accounts for the rate of mass transfer 
[32,35,36]. As k, is a lumped coefficient, this 
term includes the effects of diffusion through the 
stationary phase particles and the rate of adsorp- 
tion/desorption. 

Assuming a Van Deemter plate height equa- 
tion (eqns. lla and 12a), the first term is con- 
stant, the second term is proportional to l/u and 
the third term is proportional to U. Hence there 
is an optimum value of the mobile phase velocity 
for which the H is minimum and the column 
efficiency maximum: 

(14) 

This is a classical result. If we consider now eqn. 
5b, we see that, assuming that D, is again given 
by eqn. 12a, only the first factor on the right- 
hand side depends on the mobile phase velocity. 
Differentiating it with respect to u yields an 
optimum value of the velocity: 

dpt = d YD,(~ + K)*k, 
K (15) 

The two equations are obviously very similar, 
but because of the non-linear thermodynamics of 
phase equilibrium, the second one depends on 
the height of the concentration step and also on 
the second isotherm parameter. Therefore, for a 
given system, there exists an optimum linear 
velocity which gives the smallest shock layer 
thickness for a given step concentration. This 
optimum velocity is a function of the concen- 
tration and differs from the optimum velocity 
under linear conditions. 

We note also that when the mobile phase 
velocity increases indefinitely, the shock layer in 
time units, Avt (eqn. 5c), tends towards a finite 
limit. This limit is inversely proportional to k,. 

Dependence of the optimum mobile phase 
velocity u&, on the height of the concentration 
step 

Figs. 4 (2-phenylethanol) and 5 (4-tert-butyl- 
phenol) show the plots of the optimum flow 

0.0 20.0 40.0 00.0 80.0 lr 

Concentration (ma/ml) 
5.0 

Fig. 4. Plot of the optimum velocity for minimum shock 
layer thickness versus the height of the concentration step 
(eqn. 15). Sample, 2-phenylethanol (k;l = 0.88). Experimen- 
tal conditions as in Fig. 2. The symbol A gives utPt, the 
optimum velocity for minimum HETP. 

velocity verSuS the height of the concentration 
step for the two compounds studied. Both curves 
have a limit equal to r& for r, = C,, = 0, which 
is obvious from eqns. 14 and 15. However, these 
two curves are strikingly different. One exhibits 
a well defined minimum, whereas the other is 
steadily increasing with increasing concentration. 

Eqn. 15 shows that the optimum velocity for 
minimum shock layer thickness is a function of 
the height of the concentration step. Differentia- 
tion of eqn. 15 with respect to r, shows that the 
optimum velocity, z&,~, passes through a mini- 
mum, achieved at the concentration 

r;=k;,-1 

k;,-1 
c;=7 

k;- 1 
=f'q;k 

0 
(16b) 

The difference between the curves in Figs. 4 and 
5 is now easily explained. There is obviously no 
minimum of z& when kh is smaller than unity; 
then the optimum velocity for minimum SLT 
increases regularly with increasing concentration 
step height. For the value of r. given by eqn. 
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0.0 200.0 400.0 600.0 000.0 1000.0 1200.0 

Concentration (ma/ml) 

Fig. 5. Plot of the optimum velocity for minimum shock 
layer thickness versus the height-of the concentration step. 
Sample, 4-rerr.-butylphenol (/c;l = 10). Experimental condi- 

tions as in Fig. 3. The symbol A gives I&,,, the optimum 
velocity for minimum HETP. The concentration for which 

uf, = u:pt is 97 mglml. 

16a, K is equal to 1 and z& is smaller, or much 
smaller, than ~2~~. 

By equating eqns. 14 and 15, we obtain the 
concentration step height at which the optimum 
linear velocity for minimum SLT is equal to that 
for minimum HETP, We have two solutions, 
r, = 0 (a trivial solution) and 

r,** = kA2 - 1 (ITa) 

C,** =Fq,(k&i-) (17b) 

We have shown above that the velocity for which 
the shock layer thickness is minimum depends on 
the height of the concentration step and is given 
by eqn. 15. We have also shown that the two 
optimum velocities, uf,, for minimum shock 
layer thickness and r.& for minimum HETP, are 
equal for r, = kh2 - 1. At lower concentrations, 
we have z&,, < U& and the column should be 
operated at lower velocities in frontal analysis 
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than under linear conditions. When the concen- 
tration step exceeds kA2 - 1, however, the con- 
verse is true, and the column should be operated 
at a higher flow velocity in frontal analysis than 
under linear conditions. 

These results are illustrated in Figs. 4 and 5. It 
can be seen that part of or the whole of the 
concentration range discussed above is often 
inaccessible. The only exception is when the 
retention factor of the component selected is 
smaller than about 2 and the column satura- 
tion capacity is large. For example, for 
2-phenylethanol (Fig. 4) the retention factor is 
lower than unity, the optimum .mobile phase 
velocity for minimum SLT always increases with 
increasing concentration step height and u:,~ 
always markedly exceeds u&. In contrast, for 
4-tert.-butylphenol (Fig. 5), which has a large 
retention factor (k; = lo), the optimum velocity 
for minimum shock layer thickness decreases 
with increasing concentration until C,, = 97 mg/ 
ml, where it is minimum, and then increases. 
With this compound, u&t is lower than ubpt until 
C, reaches the impractical concentration of 1080 

s 
d 

Yz 
E ga - 
5 

3 $1 k: . . . ...* < 
$1 

0.0 100.0 200.0 3 

Concentration (mg/ml) 
I.0 

Fig. 6. Plot of the optimum velocity for minimum shock 
layer thickness ver~z4.r the height of the concentration step 
(eqn. 15). Dash-dotted line, kh = 2; dotted line, k; = 5; solid 
line, kb = 10. 
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mg/ml. In the range of concentrations accessible 
to experiments, u&, will be much lower than 
U 

L 

opt * 

Fig. 6 illustrates the important differences 
between the behavior of the SLT of different 
compounds with the height of the concentration 
step. When the retention factor, kh, is low, the 
optimum velocity for minimum SLT increases 
constantly with increasing concentration. When 
the retention factor exceeds about 2, the op- 
timum velocity exhibits a minimum for a certain 
concentration, and this concentration increases 
with increasing value of the retention factor. 

Dependence of the thickness of the shock layer 
on the height of the concentration step 

The SLT depends on the height of the concen- 
tration step. However, differentiation of eqn. 5b 
with respect to r, and setting the differential 
equal to zero gives a fourth-degree equation 
without simple roots. We can have an idea of the 
variation of Aqt, however, by studying separately 
the two terms. 

Differentiation of the first term [( 1 + K)l 
K][(& + 2)/r,], with respect to r, shows that it is 
minimum for 

r,,, = @Cl+ k;) (184 
This concentration is high. For kh = 1, which is a 
very small value of the retention factor by 
displacement standards, the value of r,,, is 2, for 
which value we achieve a coverage of two-thirds 
of a monolayer at equilibrium (see eqn. 6b). For 
kI, = 7, a surface coverage of 80% would be 
obtained at the optimum concentration of 4. As 
a consequence, we can expect that this term will 
decrease with increasing height of the concen- 
tration step in the entire range of practical 
interest. 

Similarly, differentiation of the second term of 
eqn. 5b, [l/(1 + K)][(& +2)/r,], shows that it is 
minimum for 

r 
OJ 

= 2+j/4+2(k$2)(k;,+l) 

kh2 - 2 Wb) 

For kh > j& the value of r,,, is large. For kh = 
2, r,,, = 3, for which the surface coverage at 
equilibrium is 75%. For kh< ti, the second 

term of eqn. 5b decreases monotonically with 
increasing concentration. 

As both terms of eqn. 5b decrease with in- 
creasing value of Co until they are minimum for 
impractically large concentrations, we can con- 
clude that the same is true for the SLT, which in 
practice will decrease steadily with increasing 
height of the concentration step. 

We measured the shock layer thickness of a 
series of breakthrough curves recorded for the 
injection of solutions of increasing concentra- 
tions in a column previously swept with pure 
mobile phase, so the height of the concentration 
step is always Co. Between two successive ex- 
periments, the column is properly swept with 
pure mobile phase during the time needed to 
purge it from the solute introduced previously. 
The experimental data obtained with the Vydac 
column are shown in Fig. 7a (symbols). They are 
overlaid in this figure with the curve derived 
from eqn. 5b (solid line). There is very good 
agreement between the experimental results and 
the prediction of eqn. 5b at high concentrations. 
At low concentrations, this equation predicts a 
shock layer thickness that is thicker than the 
width of a breakthrough front under linear 
conditions, and significant deviations take place. 

The dotted and dashed lines in Fig. 7a corre- 
spond to the two contributions to the shock layer 
thickness in eqn. 5b. These contributions result 
from the axial dispersion and the mass transfer 
resistance, respectively. They were calculated 
from the sum of the A and B terms and the C 
term of the Van Deemter equation [33] (eqns. 
12a and c and Table I). Whereas the contribution 
of the mass transfer resistance decreases mono- 
tonically with increasing concentration, the con- 
tribution of the axial dispersion passes through a 
minimum, which explains the minimum in the 
shock layer thickness. We note that, under the 
experimental conditions of Fig. 7a, eqns. 5 and 
16 predict a minimum for the thickness of the 
shock layer for a concentration step of cu. 20 
mg/ml, in agreement with the experimental 
data. 

The same data are shown in Fig. 7b, where the 
choice of a logarithmic scale for the concen- 
tration axis permits a clearer illustration of the 
experimental results obtained in a concentration 
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0 

Fig. 7. Plot of the shock layer thickness ve1su.r the height of 
the concentration step of 2-phenylethanol. Experimental 
conditions as in Fig. 2 except the flow velocity, 0.07 cm/s. At 
this flow-rate, H = 4.8. 10m3 cm, under linear conditions. (a) 
Symbols, experimental data; solid line, eqn. Sb; dotted line, 
contribution of axial dispersion to the height of the shock 
layer; dashed line, contribution of mass transfer resistance to 

the height of the shock layer. (b) Symbols, experimental data 
in semi-logarithmic coordinates; dot-dashed line, value pre- 

dicted by the linear model (w = 46 = 0.62 cm); solid line, 
variation predicted by eqn. 5b. 

range covering 3.5 orders of magnitude. The 
existence of three concentration domains is obvi- 
ous. At high concentrations, eqn. Sb fits the 
experimental results well. At very low concen- 
trations, on the other hand, the width of the 
breakthrough front is constant and equal to the 
value resulting from measurements of the width 
of the Gaussian peak obtained under linear 
conditions. There is an intermediate concentra- 
tion range in which the width of the break- 
through curve decreases sharply with increasing 
height of the concentration step. 

As mentioned above, eqns. 5 correspond to a 
constant pattern behavior, i.e., to an asymptotic 
solution. In other words, these equations are 
strictly valid only for an infinitely long column. 
The rate at which a breakthrough profile con- 
verges towards a constant pattern decreases with 
decreasing step height, and hence with decreas- 
ing change in isotherm slope across the step. At 
the end of a finite column, we observe a break- 
through curve that is close to a constant pattern, 
and hence has the shock layer profile, only if the 
column is long enough and the concentration 
step high enough. If the column is too short or 
the step height too small, a constant pattern is 
not achieved, and the width of the breakthrough 
curve is narrower than predicted by eqn. 5b. 
This is in agreement with the experimental 
results in the figures. 

CONCLUSIONS 

An optimum linear velocity for minimum 
thickness of the shock layer exists in frontal 
analysis. This optimum velocity is a function of 
the height of the concentration step. Depending 
on the retention of the compound under infinite 
dilution, the optimum velocity increases con- 
stantly with increasing height of the concentra- 
tion step, or may pass through a minimum. 

Accordingly, when measuring adsorption iso- 
therms by frontal analysis, the mobile phase 
velocity should be selected carefully. When the 
retention factor under linear conditions is much 
higher than unity, relatively low values of the 
mobile phase velocity, lower than the optimum 
velocity for minimum plate height, should be 
considered, especially for the small step heights. 
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However, the most important consequences of a 
study of the dependence of shock layer thick-, 
nesses on the mobile phase velocity and the 
height of the concentration step will be found in 
displacement chromatography [24]. As this prob- 
lem is a binary problem, it must be discussed in 
connection with the theory of shock layers be- 
tween two 

SYMBOLS 

a, b 

A,B 

C 

C’ 

C: 

C: 

C0 
D, 
Dl_ 

f(6 
HETP, H 

components. 

Coefficients of the Langmuir iso- 
therm 
Coefficients in the plate height equa- 
tion 
Concentration in the mobile phase 

(mgjml) 
Concentrations in the column at x = 
--tQ 
Concentrations in the column at x = 
+m 
Concentration bound of the shock 
layer, on the upstream side 
Concentration bound of the shock 
layer, on the downstream side 
Concentration of a step injection 
Apparent dispersion coefficient 
Axial dispersion coefficient (cm2 /s) 
Phase ratio of the column (ml/ml) 
Isotherm equation 
Height equivalent to a theoretical 
plate (cm) 
Auxiliary parameter 
Rate constant of mass transfer (s-l) 
Capacity factor of the component at 
infinite dilution 
Column length 
Concentration in the stationary 
phase (mg/ml) 
Column saturation capacity 
Shock layer thickness 
Time 
Shock layer velocity (cm/min) 
Mobile phase linear velocity (cm/s) 
Optimum linear velocity in linear 
chromatography (cm/s) 
Optimum linear velocity for mini- 
mum shock layer thickness (cm/s) 
Reduced distance along the column 
Distance along the column 
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Greek letters 
Dimensionless mobile phase concen- 
tration 
Tortuosity of the packing 
Shock layer thickness in length units 

(cm) 
Shock layer thichness in time units 

(s) 
Concentration amplitude of the 
shock layer in the stationary phase 
Concentration amplitude of the 
shock layer in the mobile phase 
Dimensionless shock layer 
Reduced shock velocity 
Dimensionless stationary phase con- 
centation 
Parameter defining the shock layer 
thickness 
Standard deviation of a Gaussian 
peak 
Reduced time 
Moving coordinate of the shock layer 
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